Exercise 15

The battery in Exercise 13 is replaced by a generator producing a voltage of $E(t)=12 \sin 10 t$. Find the charge at time t.

Solution

The equation for the charge in a circuit consisting of an inductor, a resistor, and a capacitor in series with this generator is given by

$$
L \frac{d^{2} Q}{d t^{2}}+R \frac{d Q}{d t}+\frac{1}{C} Q=12 \sin 10 t
$$

Since there's zero charge and no current initially, the initial conditions associated with this ODE are $Q(0)=0$ and $Q^{\prime}(0)=0$. Because the ODE is linear, the general solution can be written as the sum of a complementary solution and a particular solution.

$$
Q=Q_{c}+Q_{p}
$$

The complementary solution satisfies the associated homogeneous equation.

$$
\begin{equation*}
L \frac{d^{2} Q_{c}}{d t^{2}}+R \frac{d Q_{c}}{d t}+\frac{1}{C} Q_{c}=0 \tag{1}
\end{equation*}
$$

Because this ODE is homogeneous and has constant coefficients, it has solutions of the form $Q_{c}=e^{r t}$.

$$
Q_{c}=e^{r t} \quad \rightarrow \quad \frac{d Q_{c}}{d t}=r e^{r t} \quad \rightarrow \quad \frac{d^{2} Q_{c}}{d t^{2}}=r^{2} e^{r t}
$$

Substitute these formulas into equation (1).

$$
L\left(r^{2} e^{r t}\right)+R\left(r e^{r t}\right)+\frac{1}{C}\left(e^{r t}\right)=0
$$

Divide both sides by $e^{r t}$.

$$
L r^{2}+R r+\frac{1}{C}=0
$$

Multiply both sides by C.

$$
L C r^{2}+R C r+1=0
$$

Solve for r, noting that $R^{2} C^{2}-4 L C<0$.

$$
\begin{gathered}
r=\frac{-R C \pm i \sqrt{4 L C-R^{2} C^{2}}}{2 L C} \\
r=\left\{\frac{-R C-i \sqrt{4 L C-R^{2} C^{2}}}{2 L C}, \frac{-R C+i \sqrt{4 L C-R^{2} C^{2}}}{2 L C}\right\}
\end{gathered}
$$

Two solutions to the ODE are

$$
\exp \left(\frac{-R C-i \sqrt{4 L C-R^{2} C^{2}}}{2 L C} t\right) \quad \text { and } \quad \exp \left(\frac{-R C+i \sqrt{4 L C-R^{2} C^{2}}}{2 L C} t\right) .
$$

According to the principle of superposition, the general solution to equation (1) is a linear combination of these two.

$$
\begin{aligned}
& Q_{c}(t)=C_{1} \exp \left(\frac{-R C-i \sqrt{4 L C-R^{2} C^{2}}}{2 L C} t\right)+C_{2} \exp \left(\frac{-R C+i \sqrt{4 L C-R^{2} C^{2}}}{2 L C} t\right) \\
& =C_{1} \exp \left(-\frac{R}{2 L} t\right) \exp \left(-i \frac{\sqrt{4 L C-R^{2} C^{2}}}{2 L C} t\right)+C_{2} \exp \left(-\frac{R}{2 L} t\right) \exp \left(i \frac{\sqrt{4 L C-R^{2} C^{2}}}{2 L C} t\right) \\
& =\exp \left(-\frac{R}{2 L} t\right)\left[C_{1} \exp \left(-i \frac{\sqrt{4 L C-R^{2} C^{2}}}{2 L C} t\right)+C_{2} \exp \left(i \frac{\sqrt{4 L C-R^{2} C^{2}}}{2 L C} t\right)\right] \\
& =\exp \left(-\frac{R}{2 L} t\right)\left[C_{1}\left(\cos \frac{\sqrt{4 L C-R^{2} C^{2}}}{2 L C} t-i \sin \frac{\sqrt{4 L C-R^{2} C^{2}}}{2 L C} t\right)\right. \\
& \left.+C_{2}\left(\cos \frac{\sqrt{4 L C-R^{2} C^{2}}}{2 L C} t+i \sin \frac{\sqrt{4 L C-R^{2} C^{2}}}{2 L C} t\right)\right] \\
& =\exp \left(-\frac{R}{2 L} t\right)\left[\left(C_{1}+C_{2}\right) \cos \frac{\sqrt{4 L C-R^{2} C^{2}}}{2 L C} t+\left(-i C_{1}+i C_{2}\right) \sin \frac{\sqrt{4 L C-R^{2} C^{2}}}{2 L C} t\right] \\
& =\exp \left(-\frac{R}{2 L} t\right)\left(C_{3} \cos \frac{\sqrt{4 L C-R^{2} C^{2}}}{2 L C} t+C_{4} \sin \frac{\sqrt{4 L C-R^{2} C^{2}}}{2 L C} t\right)
\end{aligned}
$$

On the other hand, the particular solution satisfies the original ODE.

$$
\begin{equation*}
L \frac{d^{2} Q_{p}}{d t^{2}}+R \frac{d Q_{p}}{d t}+\frac{1}{C} Q_{p}=12 \sin 10 t \tag{2}
\end{equation*}
$$

The inhomogeneous term is a sine function, so the trial solution is $Q_{p}=A \cos 10 t+B \sin 10 t$.
$Q_{p}=A \cos 10 t+B \sin 10 t \rightarrow \frac{d Q_{p}}{d t}=-10 A \sin 10 t+10 B \cos 10 t \quad \rightarrow \quad \frac{d^{2} Q_{p}}{d t^{2}}=-100 A \cos 10 t-100 B \sin 10 t$ Substitute these formulas into equation (2).
$L(-100 A \cos 10 t-100 B \sin 10 t)+R(-10 A \sin 10 t+10 B \cos 10 t)+\frac{1}{C}(A \cos 10 t+B \sin 10 t)=12 \sin 10 t$

$$
\frac{A-100 A L C+10 B R C}{C} \cos 10 t+\frac{B-100 B L C-10 A R C}{C} \sin 10 t=12 \sin 10 t
$$

Match the coefficients on both sides to get a system of equations for A and B.

$$
\begin{aligned}
& \frac{A-100 A L C+10 B R C}{C}=0 \\
& \frac{B-100 B L C-10 A R C}{C}=12
\end{aligned}
$$

Solving it yields

$$
A=-\frac{120 R C^{2}}{(1-100 L C)^{2}+100 R^{2} C^{2}} \quad \text { and } \quad B=\frac{12 C(1-100 L C)}{(1-100 L C)^{2}+100 R^{2} C^{2}}
$$

The particular solution is then

$$
Q_{p}=-\frac{120 R C^{2}}{(1-100 L C)^{2}+100 R^{2} C^{2}} \cos 10 t+\frac{12 C(1-100 L C)}{(1-100 L C)^{2}+100 R^{2} C^{2}} \sin 10 t
$$

and the general solution to the original ODE is

$$
\begin{aligned}
& Q(t)=Q_{c}+Q_{p} \\
& =\exp \left(-\frac{R}{2 L} t\right)\left(C_{3} \cos \frac{\sqrt{4 L C-R^{2} C^{2}}}{2 L C} t+C_{4} \sin \frac{\sqrt{4 L C-R^{2} C^{2}}}{2 L C} t\right) \\
&
\end{aligned}
$$

Differentiate it with respect to t.

$$
\begin{aligned}
\frac{d Q}{d t}=-\frac{R}{2 L} \exp (- & \left.\frac{R}{2 L} t\right)\left(C_{3} \cos \frac{\sqrt{4 L C-R^{2} C^{2}}}{2 L C} t+C_{4} \sin \frac{\sqrt{4 L C-R^{2} C^{2}}}{2 L C} t\right) \\
& +\exp \left(-\frac{R}{2 L} t\right)\left(-C_{3} \frac{\sqrt{4 L C-R^{2} C^{2}}}{2 L C} \sin \frac{\sqrt{4 L C-R^{2} C^{2}}}{2 L C} t\right. \\
& \left.+C_{4} \frac{\sqrt{4 L C-R^{2} C^{2}}}{2 L C} \cos \frac{\sqrt{4 L C-R^{2} C^{2}}}{2 L C} t\right) \\
& +\frac{1200 R C^{2}}{(1-100 L C)^{2}+100 R^{2} C^{2}} \sin 10 t+\frac{120 C(1-100 L C)}{(1-100 L C)^{2}+100 R^{2} C^{2}} \cos 10 t
\end{aligned}
$$

Apply the initial conditions to determine C_{3} and C_{4}.

$$
\begin{aligned}
Q(0) & =C_{3}-\frac{120 R C^{2}}{(1-100 L C)^{2}+100 R^{2} C^{2}}=0 \\
\frac{d Q}{d t}(0) & =-\frac{R}{2 L} C_{3}+C_{4} \frac{\sqrt{4 L C-R^{2} C^{2}}}{2 L C}+\frac{120 C(1-100 L C)}{(1-100 L C)^{2}+100 R^{2} C^{2}}=0
\end{aligned}
$$

Solving this system yields

$$
C_{3}=\frac{120 R C^{2}}{(1-100 L C)^{2}+100 R^{2} C^{2}} \quad \text { and } \quad C_{4}=\frac{120 C^{2}\left(-2 L+200 C L^{2}+C R^{2}\right)}{\sqrt{4 L C-R^{2} C^{2}}\left[(1-100 L C)^{2}+100 R^{2} C^{2}\right]} .
$$

Therefore,

$$
\left.\left.\begin{array}{rl}
Q(t)= & \exp \left(-\frac{R}{2 L} t\right)\left[\frac{120 R C^{2}}{(1-100 L C)^{2}+100 R^{2} C^{2}} \cos \frac{\sqrt{4 L C-R^{2} C^{2}}}{2 L C} t\right.
\end{array}\right]+\quad+\frac{120 C^{2}\left(-2 L+200 C L^{2}+C R^{2}\right)}{\sqrt{4 L C-R^{2} C^{2}}\left[(1-100 L C)^{2}+100 R^{2} C^{2}\right]} \sin \frac{\sqrt{4 L C-R^{2} C^{2}}}{2 L C} t\right] .
$$

Plug in $R=20 \Omega, L=1 \mathrm{H}$, and $C=0.002 \mathrm{~F}$.

$$
Q(t)=e^{-10 t}(0.012 \cos 20 t-0.006 \sin 20 t)-0.012 \cos 10 t+0.024 \sin 10 t
$$

Differentiate this with respect to t to get the current.

$$
\begin{aligned}
I(t)=\frac{d Q}{d t} & =-10 e^{-10 t}(0.012 \cos 20 t-0.006 \sin 20 t)+e^{-10 t}(-0.24 \sin 20 t-0.12 \cos 20 t)+0.12 \sin 10 t+0.24 \cos 10 \\
& =e^{-10 t}(-0.24 \cos 20 t-0.18 \sin 20 t)+0.24 \cos 10 t+0.12 \sin 10 t
\end{aligned}
$$

Below is a plot of the charge versus time.

Below is a plot of the current versus time.

